首页> 外文OA文献 >Hybrid BDI-POMDP Framework for Multiagent Teaming
【2h】

Hybrid BDI-POMDP Framework for Multiagent Teaming

机译:用于多智能体组合的混合BDI-pOmDp框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many current large-scale multiagent team implementations can be characterizedas following the belief-desire-intention (BDI) paradigm, with explicitrepresentation of team plans. Despite their promise, current BDI teamapproaches lack tools for quantitative performance analysis under uncertainty.Distributed partially observable Markov decision problems (POMDPs) are wellsuited for such analysis, but the complexity of finding optimal policies insuch models is highly intractable. The key contribution of this article is ahybrid BDI-POMDP approach, where BDI team plans are exploited to improve POMDPtractability and POMDP analysis improves BDI team plan performance. Concretely,we focus on role allocation, a fundamental problem in BDI teams: which agentsto allocate to the different roles in the team. The article provides three keycontributions. First, we describe a role allocation technique that takes intoaccount future uncertainties in the domain; prior work in multiagent roleallocation has failed to address such uncertainties. To that end, we introduceRMTDP (Role-based Markov Team Decision Problem), a new distributed POMDP modelfor analysis of role allocations. Our technique gains in tractability bysignificantly curtailing RMTDP policy search; in particular, BDI team plansprovide incomplete RMTDP policies, and the RMTDP policy search fills the gapsin such incomplete policies by searching for the best role allocation. Oursecond key contribution is a novel decomposition technique to further improveRMTDP policy search efficiency. Even though limited to searching roleallocations, there are still combinatorially many role allocations, andevaluating each in RMTDP to identify the best is extremely difficult. Ourdecomposition technique exploits the structure in the BDI team plans tosignificantly prune the search space of role allocations. Our third keycontribution is a significantly faster policy evaluation algorithm suited forour BDI-POMDP hybrid approach. Finally, we also present experimental resultsfrom two domains: mission rehearsal simulation and RoboCupRescue disasterrescue simulation.
机译:当前许多大型多主体团队实施方案的特征都可以遵循信念-愿望-意图(BDI)范例,并明确表示团队计划。尽管有希望,但当前的BDI团队缺乏在不确定性下进行定量绩效分析的工具。分布式部分可观察的马尔可夫决策问题(POMDP)非常适合此类分析,但是在此类模型中找到最佳策略的复杂性非常棘手。本文的主要贡献是混合BDI-POMDP方法,该方法利用BDI团队计划来提高POMDP的可伸缩性,而POMDP分析则可以提高BDI团队计划的性能。具体而言,我们专注于角色分配,这是BDI团队的一个基本问题:要分配给团队中不同角色的代理。本文提供了三个关键贡献。首先,我们描述一种角色分配技术,该技术考虑了该领域未来的不确定性;多代理角色分配的先前工作未能解决此类不确定性。为此,我们介绍了RMTDP(基于角色的马尔可夫团队决策问题),这是一种新的分布式POMDP模型,用于分析角色分配。通过显着减少RMTDP策略搜索,我们的技术获得了可处理性;特别是,BDI团队计划提供不完整的RMTDP策略,而RMTDP策略搜索通过寻找最佳角色分配来填补此类不完整策略中的空白。我们的第二个主要贡献是一种新颖的分解技术,可以进一步提高RMTDP策略搜索效率。尽管仅限于搜索角色分配,但组合上仍然有很多角色分配,并且在RMTDP中评估每个角色以找出最佳角色分配是极其困难的。我们的分解技术利用BDI团队计划中的结构来显着减少角色分配的搜索空间。我们的第三个主要贡献是适用于我们的BDI-POMDP混合方法的明显更快的策略评估算法。最后,我们还从两个领域展示了实验结果:任务排练模拟和RoboCupRescue灾难救援模拟。

著录项

  • 作者

    Nair, R.; Tambe, M.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号